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The stability of a premixed laminar flame supported by a general combustion
reaction system is considered using the Evans function method. The spectrum of
the linearised second-order differential operator is investigated in detail. The special
structure of the differential equations due to an Arrhenius temperature dependence is
exploited. It is shown that, for certain combustion systems, the limit of the Jacobian
of the reaction terms as the travelling wave coordinate approaches the front and rear
of the flame is a lower triangular matrix. For this type of system a simple geometrical
method is shown for the study of the essential spectrum of the linearised operator, and
for determining the domain of the Evans function. The results are applied to some rep-
resentative combustion reactions.
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1. Introduction

We consider the stability of a flame supported by the reactions
n∑

i=1

αijAi →
n∑

i=1

βijBi ± heat, rate = kj e−Ej /RT

n∏
i=1

A
αij

i , (j = 1, 2, . . . , r).

Introducing the scaled concentrations ai , scaled temperature b and scaled flame
velocity c the equations governing our model, written in a reference frame
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moving with the flame, are [1,2]

L−1
i a′′

i − ca′
i +

r∑
j=1

�ijwj (a1, . . . , an, b) = 0 (i = 1, 2, . . . , n), (1)

b′′ − cb′ +
r∑

j=1

�n+1,jwj (a1, . . . , an, b) − h(b) = 0, (2)

where primes denote differentiation with respect to the travelling wave
co-ordinate s, Li (i = 1, 2, . . . , n) are the Lewis numbers. The elements of the
(n + 1) × r matrix � can be written in the form �ij = (αij − βij )γij for 1 � i � n,
and �n+1,j = qjδj , where qj is the exothermicity of the j th reaction and the con-
stants γij , δj are determined by the rate constants. The nonnegative function h

describes the heat loss in the system, h(0) = 0 is assumed. The reaction rate of
the j th reaction is given by

wj(a1, . . . , an, b) = eµj (b−1)/b

n∏
i=1

a
αij

i , (3)

where µj is the scaled activation energy of the j th reaction. Equations (1) and
(2) are subject to the boundary conditions

ai → ai,0, b → 0 as s → −∞, (4)

a′
i → 0, b′ → 0 as s → +∞. (5)

Here ai,0 denotes the initial concentration of reactant ai in front of the wave. The
boundary condition b → 0 at −∞ is equivalent to T → Ta, where T is temper-
ature and Ta is the ambient temperature, because the dimensionless temperature
b is introduced as b = (T − Ta)/(Tb − Ta) (here Tb is the burnt gas tempera-
ture). Using these notations the reaction term takes the form exp(µj (b−1)/(b+
Ta/(Tb−Ta))). With this reaction term we face the so-called ‘cold boundary diffi-
culty’. There are different ways to avoid that by changing the reaction term. One
is introducing an ignition temperature, below which there is no reaction [3,4].
The other is introducing the reaction term given in (3), see e.g. [5,6]. There is
only a negligible difference between the profiles obtained by the two methods,
and the results are qualitatively the same.

Introducing the vector valued function U = (a1, . . . , an, b)T systems (1) and
(2) can be written in the more general form

DU ′′ + BU ′ + F(U) = 0, (6)

where U : R → R
m is an m (= n + 1) dimensional vector-valued unknown

function, D, B are m×m diagonal matrices, the diagonal elements of D are pos-
itive, and F : R

m → R
m is a differentiable function. We investigate the stability
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of U as a travelling wave solution of the corresponding time dependent system.
There are well-known methods for studying the stability of travelling waves [7–9].
Here our aim is to apply these methods, particularly the Evans function method,
for combustion systems of the forms (1) and (2). The stability of combustion
systems have previously been widely studied, see e.g. [4,6,10–13]. Here we apply
the Evans function method, which has been applied for several models in phys-
ics [14–16], chemistry [17,18] and biology [19,20], but for only a few specialised
combustion systems [17,21–23].

Our main motivating examples are the following systems.

• The first-order reaction

A → P1 + heat, rate = ka e−E/RT .

Here r = 1, n = 1, � =
(−1

1

)
. In the adiabatic case h = 0, in the case

of Newtonian heat loss h(b) = γ b with some positive constant γ . The
adiabatic case has been investigated by many authors, e.g. [4,6,10,21,24].
The heat loss case was studied using asymptotic expansions in [24], the-
oretically in [3] and numerically in [12,23,25].

• The exothermic–endothermic system

A → P1 + heat, rate = k1a e−E1/RT ,

W → P2 − heat, rate = k2w e−E2/RT .

Here r = 2, n = 2,

� =

−1 0

0 −β

1 −α


 ,

where α, β are constants depending on the rate constants, initial concen-
trations and exothermicity of the reactions. Here h = 0, because the heat
loss is built in the endothermic reaction. This system was investigated in
[5,22,26].

The stability of U can be determined using the spectrum of the second-order
differential operator

L(V ) = DV ′′ + BV ′ + F ′(U)V . (7)

The main topic of the paper is the investigation of the spectrum of L, when the
system has the special forms (1) and (2).
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2. General properties of the spectrum

In this section we investigate the spectrum of the second-order differential
operator

(LV )(s) = DV ′′(s) + BV ′(s) + Q(s)V (s), (8)

defined in C0(R, C
m) ∩ C2(R, C

m), where

C0(R, C
m) = {V : R → C

m | V is continuous, lim±∞ V = 0},

endowed with the supremum norm ‖V ‖ = maxR |V (s)|, D and B are m×m diag-
onal matrices with positive diagonal elements,

Q : R → R
m×m continuous there exist Q± = lim

s→±∞ Q(s).

Definition 1. The complex number λ ∈ C is called a regular value of L if the
operator L−λI has bounded inverse that is defined in the whole space C0. That
is, for any W ∈ C0, there exists a unique solution of LV − λV = W in C0, and
there exists M > 0 such that, for any W ∈ C0, ‖V ‖ � M‖W‖. The spectrum of L
consists of non-regular values:

σ(L) := {λ ∈ C | λ not regular}.
The number λ is called an eigenvalue if L − λI has no inverse (i.e. there exists
V ∈ C0, V �= 0, such that LV − λV = 0.) The essential spectrum of L is

σe(L) := {λ ∈ σ(L) | λ is not an isolated eigenvalue}.

In order to characterise the spectrum the corresponding first-order system
has to be investigated. Let x = (V , V ′)T , y = (0, W)T , then the first-order system
corresponding to equation LV − λV = W is

ẋ(s) = Aλ(s)x(s) + y(s), (9)

where

Aλ(s) =
(

0 I

D−1(λI − Q(s)) −D−1B

)
, (10)

here we do not deal with the results concerning the first-order system, see e.g.
[27,28], only their consequences concerning the operator L are cited. Since func-
tion Q tends to a limit at ±∞, the limits

A±
λ = lim

s→±∞ Aλ(s),
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exist. The dimension of the stable, unstable and central subspaces of the matrices
A±

λ play an important role. Denote the number of eigenvalues (with multiplicity)
of A+

λ with positive, negative, zero real part by n+
u (λ), n+

s (λ), n+
c (λ), respectively.

We define n−
u (λ), n−

s (λ), n−
c (λ) similarly using A−

λ . In the case n+
c (λ) = 0 = n−

c (λ)

exponential dichotomies and perturbation theorems [27,29] can be used to show
that there exists an n+

s (λ) dimensional subspace E+
s (λ) ⊂ C

2m of initial condi-
tions from which the solution of the homogeneous equation ẋ(s) = Aλ(s)x(s)

tends to zero at +∞, and there exists an n−
u (λ) dimensional subspace E−

u (λ) ⊂
C

2m of initial conditions from which the solution of the homogeneous equation
tends to zero at −∞. The following theorem is proved in [7].

Theorem 1. If n+
c (λ) > 0 or n−

c (λ) > 0, then λ ∈ σ(L). If n+
c (λ) = 0 = n−

c (λ),
then the following two statements hold.

1. λ is an eigenvalue of L ⇔ dim(E+
s (λ) ∩ E−

u (λ)) > 0.

2. λ is a regular value of L ⇔ E+
s (λ) ⊕ E−

u (λ) = C
2m.

Remark 1. If n+
c (λ) = 0 = n−

c (λ), then the operator L − λI is Fredholm, and its
Fredholm index is α(L − λI) = dim E+

s (λ) + dim E−
u (λ) − 2m, see [7,28].

Using that E+
s (λ)⊕E−

u (λ) = C
2m is equivalent to dim E+

s (λ)+dim E−
u (λ) =

2m and dim(E+
s (λ) ∩ E−

u (λ)) = 0, the following statements are obvious conse-
quences of the above theorem.

Corollary 1. Assume n+
c (λ) = 0 = n−

c (λ).

1. If dim E+
s (λ) + dim E−

u (λ) > 2m, then λ is an eigenvalue of L.

2. If dim E+
s (λ) + dim E−

u (λ) < 2m, then λ ∈ σ(L).

3. If dim E+
s (λ) + dim E−

u (λ) = 2m and dim(E+
s (λ) ∩ E−

u (λ)) = 0, then λ is
a regular value of L.

4. If dim E+
s (λ) + dim E−

u (λ) = 2m and dim(E+
s (λ) ∩ E−

u (λ)) > 0, then λ is
an eigenvalue of L.

The dimension of E+
s (λ) and E−

u (λ) can be determined explicitly, because
only the eigenvalues of the matrices A±

λ have to be determined to obtain these
dimensions. However, for dim(E+

s (λ) ∩ E−
u (λ)) the full system must be solved

numerically. This leads to the definition of the Evans function.
Let

� = {λ ∈ C : n+
c (λ) = 0 = n−

c (λ), n+
s (λ) + n−

u (λ) = 2m}.
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For λ ∈ � denote the base of the subspace E+
s (λ) by v+

1 , . . . , v+
n+

s
, and the base

of the subspace E−
u (λ) by v−

1 , . . . , v−
n−

u
. The assumption dim(E+

s (λ) ∩ E−
u (λ)) > 0

means that the two bases together give a linearly dependent system of vectors,
that is, the determinant formed by these 2m vectors is zero. Hence the eigen-
values of L can be obtained using the determinant formed by the vectors of the
two bases. The Evans function can be defined as this determinant.

Definition 2. The Evans function belonging to the operator L is D : � → C

D(λ) = det
(
v+

1 . . . v+
n+

s
v−

1 . . . v−
n−

u

)

We have seen that the eigenvalues are the zeros of the Evans function. It can
be also shown that the multiplicity of an eigenvalue is equal to the multiplicity
of the zero of the Evans function, and that the Evans function is an analytic
function on the domain � [30]. Hence the zeros of D are isolated, that is in the
domain where dim E+

s (λ) + dim E−
u (λ) = 2m there can be only isolated eigen-

values.
The bases of the stable and unstable subspaces can be determined numeri-

cally in the following way. We calculate the eigenvalues of A+
λ with negative real

part, and its corresponding eigenvectors. Denote these eigenvalues by µ1, . . . , µk,
and the eigenvectors by u1, . . . , uk (for short we used the notation k = n+

s (λ)).
Similarly, denote the eigenvalues of A−

λ with positive real part by ν1, . . . , νl, and
the corresponding eigenvectors by v1, . . . , vl (for short we use the notation l =
n−

u (λ)). Then choosing a sufficiently large number L we solve the homogeneous
equation ẋ(s) = Aλ(s)x(s) in [0, L] starting from the right end point with initial
condition x(L) = uieµiL for i = 1, . . . , k. Hence we get k = n+

s (λ) linearly inde-
pendent (approximating) solutions of the differential equations, therefore their
values at y = 0 give a base of E+

s (λ). Similarly, solving the differential equation
in [−L, 0] we get a base of E−

u (λ), and the determinant defining the Evans func-
tion can be computed. We note that if L is very large and there is a significant
difference between the real parts of the eigenvalues µ1, . . . , µk, then the solution
belonging to the eigenvalue with largest real part will dominate and the solutions
starting from linearly independent initial conditions will be practically linearly
dependent at zero. (Similar case can occur in [−L, 0].) To overcome this difficulty
the problem can be extended to a wedge product space of higher dimension [14].

We now show a method to determine the eigenvalues and eigenvectors of
A±

λ , which determine the dimensions of E+
s (λ) and E−

u (λ). We deal with the two
cases together, therefore for short we introduce

Aλ =
(

0 I

D−1(λI − Q) −D−1B

)
, (11)
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where Q can be Q+ or Q−. Denote an eigenvalue of Aλ by µ and an eigenvector
by u = (u1, u2)

T , that is(
0 I

D−1(λI − Q) −D−1B

) (
u1

u2

)
= µ

(
u1

u2

)
.

Then u2 = µu1 and D−1(λI − Q)u1 − D−1Bu2 = µu2, hence

D−1(λI − Q)u1 − D−1Bµu1 = µ2u1,

yielding

(µ2D + µB + Q − λI)u1 = 0.

Thus we have established the following proposition.

Proposition 1. The number µ is an eigenvalue and u = (u1, u2)
T is an eigenvector

of Aλ if and only if

det(µ2D + µB + Q − λI) = 0 and u1 ∈ ker(µ2D + µB + Q − λI), u2 = µu1.

(12)

Thus the eigenvalues of A±
λ are determined by equation (12) of degree 2m. Once

these eigenvalues are found, the essential spectrum of L can be given explicitly.
The remaining part of the spectrum, i.e. the isolated eigenvalues, can be deter-
mined only numerically in general, a tool for which is the Evans function. How-
ever, the real part of these eigenvalues can be estimated analytically. An estimate
is established in the next Proposition.

Proposition 2. Assume that the eigenfunction V corresponding to the eigenvalue
λ of operator L is in L2(R, C

m). Let

Mjj = sup
R

Qjj , Mij = sup
R

|Qij |, i �= j.

Then we have

Reλ � sup
|a|=1

〈Ma, a〉.

In addition to the Evans function method the isolated eigenvalues can be found
with a finite-difference discretisation of the eigenvalue problem LV = λV . This
method can be faster numerically, but it gives no information on the essential
spectrum. Using this method first we truncate the problem to a bounded interval
[−L, L]. In [31] it is shown that the eigenvalues of the truncated problem tend to
those of the original problem as L → ∞. Then the truncated eigenvalue problem
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is discretised with finite differences on a grid of N points and the mN dimen-
sional matrix eigenvalue problem is solved. It is known that the eigenvalues
of the matrix eigenvalue problem tend to those of the truncated problem as
N → ∞ [32]. Finally, the values of L and N has to be increased until the
required accuracy is achieved.

3. Combustion waves

In the special case when Q is an upper or lower triangular matrix the
matrix in (12) is upper or lower triangular, hence its determinant is the product
of its diagonal elements. Therefore the left-hand side of the equation is a product
of m second degree polynomials, and the solutions can be computed explicitly.
For combustion systems of the forms (1) and (2) the matrices Q+ and Q− are
often upper or lower triangular. We will give sufficient conditions for this later
in this Section. First we present a simple method for determining the dimensions
of E+

s (λ) and E−
u (λ) geometrically when Q+ and Q− are upper or lower trian-

gular matrices. Finally, we will illustrate the method with some examples.
We will deal with the cases E+

s (λ) and E−
u (λ) together, therefore for short

we omit the ± signs and consider the eigenvalues of Aλ given in (11). The num-
ber of eigenvalues (with multiplicity) with negative, zero, positive real part is
denoted by ns(λ), nc(λ), nu(λ), respectively.

Proposition 3. If Q is an upper or lower triangular matrix, then the set {λ ∈ C :
nc(λ) � 1} consists of the following m parabolas or half lines:

Pj = {λ1 + iλ2 ∈ C : λ1 = Qjj − Djj

B2
jj

λ2
2} if Bjj �= 0,

Pj = {λ ∈ R : λ � Qjj } if Bjj = 0,
(j = 1, 2, . . . , m).

Proof. Since the matrix in (12) is upper or lower triangular, its determinant is
the product of its diagonal elements. Thus µ is an eigenvalue of Aλ if and only
if

m∏
j=1

(Djjµ
2 + Bjjµ + Qjj − λ) = 0.

Therefore µ = iω (with ω ∈ R) is an eigenvalue of Aλ if and only if there exist an
index 1 � j � m for which −Djjω

2 + iBjjω+Qjj −λ1 −λ2i = 0, that is Bjjω = λ2

and −Djjω
2 +Qjj = λ1. Hence eliminating ω, in the case Bjj = 0 we get λ2 = 0,

λ1 � Qjj ; and in the case Bjj �= 0 we get λ1 = Qjj − Djjλ
2
2/B

2
jj .

To prove the next Proposition we will need the following elementary auxil-
iary result.
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Proposition 4. Let p ∈ R and ρ ∈ C be arbitrary numbers. Then Re(
√

p2 + ρ) >

|p| if and only if (Imρ)2 > −4p2Reρ.

Proposition 5. Assume that Q is an upper or lower triangular matrix the diago-
nal elements of which are non-positive, and let λ ∈ C satisfying λ /∈ Pj for all
1 � j � m.

1. If Bjj > 0 for all 1 � j � m, and λ is on the right-hand side of k para-
bolas Pj and on the left-hand side of m−k of parabolas, then nc(λ) = 0,
nu(λ) = k, ns(λ) = 2m − k.

2. If Bjj < 0 for all 1 � j � m, and λ is on the right-hand side of k para-
bolas Pj and on the left-hand side of m−k of parabolas, then nc(λ) = 0,
nu(λ) = 2m − k, ns(λ) = k.

3. If Bjj = 0 for all 1 � j � m, then nc(λ) = 0, nu(λ) = m, ns(λ) = m.

Proof. We prove the case Bjj > 0, the proofs of the other cases are similar.
Since the matrix in (12) is upper or lower triangular, its determinant is the prod-
uct of its diagonal elements. Thus µ is an eigenvalue of Aλ if and only if

m∏
j=1

(Djjµ
2 + Bjjµ + Qjj − λ) = 0

that is there exist an index 1 � j � m for which

Djjµ
2 + Bjjµ + Qjj − λ = 0. (13)

We show that if λ is on the right-hand side of Pj , then (13) has one solution
with positive and one solution with negative real part. On the other hand if λ is
on the left-hand side of Pj , then (13) has two solutions with negative real part.
Hence if λ is on the right-hand side of k parabolas, then there are k eigenvalues
of Aλ with positive real part and 2(m−k)+k = 2m−k eigenvalues with negative
real part.

The solutions of (13) are

µ1,2 =
−Bjj ±

√
B2

jj + 4Djj (λ − Qjj )

2Djj

.

According to Proposition 4

Re
√

B2
jj + 4Djj (λ − Qjj ) > |Bjj |,

if and only if

Im(4Djj (λ − Qjj )) > −4B2
jj Re(4Djj (λ − Qjj )),
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which is equivalent to the inequality Reλ > Qjj −Djj (Imλ/Bjj )
2. This inequality

expresses that λ is on the right-hand side of Pj . Thus if λ is on the right hand
side of Pj , then Reµ1 > 0 > Reµ2. But if λ is on the left hand side of Pj , then

Re
√

B2
jj + 4Djj (λ − Qjj ) < |Bjj |, yielding Reµ1 < 0, Reµ2 < 0, because Bjj > 0.

Remark 2. The values of nc(λ), nu(λ) and ns(λ) can be determined also in the
case when the diagonal elements Bjj have different signs. We do not formalise
the statement in this general case, because it is quite complicated and in most of
the cases Bjj = c, i.e. they have the same signs.

In the case Q = Q+ denote the parabolas (or half lines) by P +
j , and in the

case Q = Q− denote the parabolas (or half lines) by P −
j . According to Prop-

osition 3 the parabolas (or half lines) P +
j , P −

j are in the essential spectrum of
L. The other parts of the essential spectrum can also be given with the help of
these parabolas, as the dimensions of E+

s (λ) and E−
u (λ) are given in Proposition

5. The isolated eigenvalues can be determined numerically by the Evans function,
the domain of which also can be given using the above parabolas, as stated in
the next Corollary of Proposition 5.

Corollary 2. Assume that the diagonal elements Bjj have the same sign, and
Q+, Q− are upper or lower triangular matrices the diagonal elements of which
are non-positive. If λ is on the right hand side of all parabolas P +

j , P −
j , then

dim E+
s (λ) = m = dim E−

u (λ), hence λ is in the domain of the Evans function.

We now give sufficient conditions to ensure that Q+, Q− are upper or lower
triangular matrices for systems (1) and (2). The non-linear terms of systems (1)
and (2) are given by the function F : R

n+1 → R
n+1 the coordinate functions are

given by

Fi(a1, . . . , an, b) =
r∑

j=1

�ijwj (a1, . . . , an, b) − Hi(b), (14)

where Hi(b) = 0 (i = 1, . . . , n) and Hn+1(b) = h(b). Hence from (4), (7) and (8)

Q− = F ′(a10, . . . , an0, 0), Q+ = F ′(a+
1 , . . . , a+

n , b+), (15)

where a+
i , b+ are the limits of ai(s), b(s) as s → +∞ and F ′ denotes the

Jacobian.

Proposition 6. Assume that all activation energies are non-zero, i.e. µj �= 0 for all
j = 1, 2, . . . , n. Then Q− is a diagonal matrix with non-positive elements. If the
temperature profile is pulse type, i.e. b+ = 0, then Q+ is also a diagonal matrix
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with non-positive elements. (In fact, these matrices can have only one non-zero
element, at the position (n + 1, n + 1).)

Proof. We show that for any a∗
1 , . . . , a

∗
n the matrix F ′(a∗

1 , . . . , a
∗
n, 0) has only

one non-zero element, which is at the position (n+ 1, n+ 1) and is non-positive.
Hence both statements follow from (15). The Jacobian matrix F ′(a∗

1 , . . . , a
∗
n, 0)

consists of the elements ∂kFi(a
∗
1 , . . . , a

∗
n, 0). Since limb→0 eµj (b−1)/b = 0 when

µj �= 0, from (3) we have ∂kwj (a
∗
1 , . . . , a

∗
n, 0) = 0 for all j = 1, . . . , r, k =

1, . . . , n. Similarly, limb→0 µj eµj (b−1)/b/b2 = 0 implies ∂n+1wj(a
∗
1 , . . . , a

∗
n, 0) = 0

for all j = 1, . . . , r. Therefore using (14) we get ∂kFi(a
∗
1 , . . . , a

∗
n, 0) = 0 for all

i = 1, . . . , n, k = 1, . . . , n + 1, and ∂kFn+1(a
∗
1 , . . . , a

∗
n, 0) = 0 for all k = 1, . . . , n.

The only nonzero element of the Jacobian can be ∂n+1Fn+1(a
∗
1 , . . . , a

∗
n, 0) =

−h′(0) � 0. The inequality follows from h(0) = 0 and h(b) � 0 for b > 0.

Proposition 7. If every species occurs in only one reaction in which it is decreas-
ing (αii − βii � 0), and h is a non decreasing function, then Q+ is a lower
triangular matrix with non-positive elements.

Proof. It can be assumed that Ai appears only in the i-th reaction, and that
the number of reactions is equal to the number of species, i.e. r = n. Then omit-
ting the last row of � we get a diagonal matrix with non-positive elements (since
αii − βii � 0). Hence from (14)

Fi(a1, . . . , an, b) = �iieµj (b−1)/ba
αii

i , i = 1, . . . , n,

yielding ∂kFi(a1, . . . , an, b) = 0 for 1 � k � n, k �= i (these equations hold for any
value of a1, . . . , an, b). For k = n + 1 we have ∂n+1Fi(a

+
1 , . . . , a+

n , b+) = 0, for

∂n+1Fi(a
+
1 , . . . , a+

n , b+) = �iiµj eµj (b
+−1)/b+

(b+)−2(a+
i )αii

= µj(b
+)−2Fi(a

+
1 , . . . , a+

n , b+) = 0,

where the last equality follows from the differential equation (1). Thus we have
shown that Q+ is a lower triangular matrix. Now we determine the signs of the
diagonal elements. For 1 � i � n we have

∂iFi(a
+
1 , . . . , a+

n , b+) = �iiαiieµj (b
+−1)/b+

(a+
i )αii−1 � 0,

because �ii = (αii − βii)γii � 0 for 1 � i � n. For the case i = n + 1

Fn+1(a1, . . . , an, b) =
n∑

i=1

�n+1,ieµi(b−1)/ba
αii

i − h(b).
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As mentioned above eµj (b
+−1)/b+

(a+
i )αii = 0, hence

∂n+1Fn+1(a
+
1 , . . . , a+

n , b+) =
n∑

i=1

�n+1,iµi(b
+)−2eµj (b

+−1)/b+
(a+

i )αii − h′(b+) � 0.

We now apply the above results to the examples mentioned in the Introduction.
In the case of the first-order reaction with Newtonian heat loss the differential
equations (1) and (2) take the form

L−1
A a′′ − ca′ − af (b) = 0, (16)

b′′ − cb′ + af (b) − γ b = 0, (17)

where a is the scaled fuel concentration, b is scaled temperature, γ is the heat
loss parameter and

f (b) = eµ b−1
b . (18)

The boundary conditions are

a → 1, b → 0 as s → −∞, a′ → 0, b′ → 0 as s → +∞. (19)

The stability of this system was investigated in detail in [23]. Now we have

D =
(

L−1
A 0
0 1

)
, B =

(−c 0
0 −c

)
, Q(s) =

(−f (b(s)) −a(s)f ′(b(s))

f (b(s)) a(s)f ′(b(s)) − γ

)
.

From equation (17) follows b → 0 for y → −∞ and for y → +∞, hence

Q+ = Q− =
(

0 0
0 −γ

)
. (20)

According to Propositions 3 and 5 the essential spectrum of the linearised oper-
ator L is determined by the parabolas

P1 =
{
λ ∈ C : Reλ = −(Imλ)2

LAc2

}
, P2 =

{
λ ∈ C : Reλ = −γ − (Imλ)2

c2

}
,

(21)

omitting the ± indices because P +
j = P −

j . These parabolas are shown in fig-
ure 1. They divide the complex plane into regions (in the figure the case LA = 1
is shown when there are three regions) where the value of n+

s (λ) and n−
u (λ) can

be easily obtained from Proposition 5. These values are also shown in figure 1.
According to Theorem 1 the two parabolas belong to the essential spectrum.
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Figure 1. The parabolas determining the essential spectrum of the operator obtained after linear-
isation of systems (16) and (17). The dimension of the subspace E+

s (λ) is shown in the upper part,
the dimension of the subspace E−

u (λ) is shown in the lower part.

Since at any point λ which is not in the parabolas dim E+
s (λ) + dim E−

u (λ) = 4
holds, Corollary 1 implies that the essential spectrum consists of the two parab-
olas, and the domain lying on the left-hand side of both parabolas consists of
regular values of L, because dim E+

s (λ) = 0. The isolated eigenvalues can only be
on the right-hand side of P1. In this domain the Evans function can be defined.
As an illustration we determine the isolated eigenvalues of L with largest real
part in the case LA = 1 and γ < γext, where γext is the extinction value of
the heat loss parameter. For γ < γext there are two solutions of (16), (17),
(19) with two different flame velocities c1 > c2. The solution with c1 is stable,
that with c2 is unstable. This can be verified using the Evans function as fol-
lows. We compute the image of a half circle centered at the origin and lying
in the right half plane under the Evans function D. If the image winds around
the origin, then by the argument principle there is (at least one) zero of D in
the half circle, that is there exists an eigenvalue of L with positive real part,
hence the corresponding flame is unstable. Choosing a sufficiently large half cir-
cle all the eigenvalues with positive real part are inside the half circle, because
of the a priori estimate given in Proposition 2. If the image of this half circle
does not wind around the origin, then there is no zero of the Evans function
in the right half of the complex plane, i.e. the operator L has no eigenvalues
there, hence the corresponding flame is stable. The images of the appropriate
half circles are shown in figure 2. For the flame moving with velocity c1 the
image is shown in figure 2a, where the winding number is 0, i.e. there is no
eigenvalue in the right half plane, hence the flame is stable. For the flame mov-
ing with velocity c2 the image is shown in figure 2b, where the winding num-
ber is 1, i.e. there is an eigenvalue in the right half plane, hence the flame is
unstable.
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Figure 2. The image of a half circle lying in the right half of the complex plane under the Evans
function D in the case LA = 1. The value of γ is below, but close to the extinction value. (a) the
velocity c1 corresponds to the stable solution, there is no eigenvalue in the half circle, the winding
number (wn) is zero. (b) the velocity c2 corresponds to the unstable solution, there is one eigenvalue

in the half circle, the winding number (wn) is one.
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Now consider the case of the exothermic–endothermic system. The differ-
ential equations (1) and (2) take the form

L−1
A a′′ − c a′ − af1(b) = 0, (22)

L−1
W w′′ − c w′ − βwf2(b) = 0, (23)

b′′ − cb′ + af1(b) − αwf2(b) = 0, (24)

where a is the scaled fuel concentration, b is scaled temperature, w is the con-
centration of the endothermic species, and

f1(b) = eµ1(b−1)/b, f2(b) = eµ2(b−1)/b. (25)

The boundary conditions are

a → 1, w → 1, b → 0 as s → −∞, (26)

a′ → 0, w′ → 0, b′ → 0 as s → +∞. (27)

This system was investigated in detail in [22]. Now we have

D =

L−1

A 0 0
0 L−1

W 0
0 0 1


 , B =


−c 0 0

0 −c 0
0 0 −c




and

Q(s) =

−f1(b(s)) 0 −a(s)f ′

1(b(s))

0 −βf2(b(s)) −βw(s)f ′
2(b(s))

f1(b(s)) αf2(b(s)) a(s)f ′
1(b(s)) − αw(s)f ′

2(b(s))


 .

From equations (22)–(24) it follows that there can be front (α > β) and pulse
(α < β) type temperature profiles, see [22]. For pulses b → 0 as s → +∞, and
for fronts b → α/β, a → 0, w → 0 as s → +∞. Hence Q− is a 3 × 3 zero
matrix,

Q+ =

0 0 0

0 0 0
0 0 0


 for pulses, Q+ =


−q1 0 0

0 −βq2 0
q1 −αq2 0


 for fronts,

where q1 = f1(1 − α/β), q2 = f2(1 − α/β). Since these are lower triangu-
lar matrices with non-positive diagonal elements, according to Propositions 3
and 5 the essential spectrum of the linearised operator L is determined by the
parabolas
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P +
1 =

{
λ ∈ C : Reλ = −q1 − (Imλ)2

LAc2

}
, P −

1 =
{
λ ∈ C : Reλ = −(Imλ)2

LAc2

}
,

P +
2 =

{
λ ∈ C : Reλ = −βq2 − (Imλ)2

LWc2

}
, P −

2 =
{
λ ∈ C : Reλ = −(Imλ)2

LWc2

}
,

P +
3 =

{
λ ∈ C : Reλ = −(Imλ)2

c2

}
, P −

3 =
{
λ ∈ C : Reλ = −(Imλ)2

c2

}
.

(In order to treat pulses and fronts together we let q1 = q2 = 0 in the case of
pulses.) These parabolas are shown in figure 3. They divide the complex plane
into regions where the value of n+

s (λ) and n−
u (λ) can be easily obtained from

Proposition 5. These values are also shown in figure 3. According to Theorem
1 all the parabolas belong to the essential spectrum.

In the case of a pulse solution P +
j = P −

j , hence similarly to the previ-
ous example, the essential spectrum consists only of the three parabolas. The
domain lying on the left-hand side of all parabolas contains regular values of L,
because dim E+

s (λ) + dim E−
u (λ) = 6 and dim E+

s (λ) = 0, implying dim(E+
s (λ) ∩

E−
u (λ)) = 0. In the domain lying on the right-hand side of all parabolas we have

dim E+
s (λ) + dim E−

u (λ) = 6, hence the Evans function can be defined there.
In the case of a front solution the essential spectrum contains open

domains as well as the three parabolas. For example in the domain between P +
1

and P +
3 in figure 3b we have dim E+

s (λ)+dim E−
u (λ) = 8 (since P +

3 = P −
3 ), there-

fore Corollary 1 implies that this domain is filled with (obviously non-isolated)
eigenvalues. It can be seen that, for any λ not lying on the parabolas, we have
dim E+

s (λ) + dim E−
u (λ) � 6, hence in the essential spectrum there are domains

filled with eigenvalues. For given values of the parameters LA, LW, α, β these
domains can be determined explicitly. The domain lying on the left-hand side
of all parabolas again contains regular values of L. In the domain lying on the
right-hand side of all parabolas we have dim E+

s (λ) + dim E−
u (λ) = 6, hence the

Evans function can be defined there.
As an illustration we determine the isolated eigenvalues of L with largest

real part in the case α = 0 for LA = LW = 3 and for LA = LW = 4.
These values were chosen because there is a Hopf bifurcation between LA =
3 and LA = 4. This can be verified using the Evans function similarly to
the previous example. We again compute the image of a half circle centered
at the origin and lying in the right half plane under the Evans function D.
The images of the appropriate half circles are shown in figure 4. In the case
LA = 3 the image is shown in figure 4a, where the winding number is 0, i.e.
there is no eigenvalue in the right half plane, hence the flame is stable. In the
case LA = 4 the image is shown in figure 4b, where the winding number is 2, i.e.
there is a pair of eigenvalues in the right half plane, hence the flame is unstable.
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Figure 3. The parabolas determining the essential spectrum of the operator obtained after lin-
earisation of systems (22) and (23). The dimension of the subspace E+

s (λ) is shown in part
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Figure 4. The image of a half circle lying in the right half of the complex plane under the Evans
function D in the case α = 0 for two different values of LA. (a) LA = 3, the image does not wind
around the origin, the winding number (wn) is zero, the corresponding solution is stable. (b) LA = 4,
the image winds twice around the origin, the winding number (wn) is two, hence there is a complex

pair of eigenvalues with positive real part, the corresponding solution is unstable.
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4. Conclusions

We have studied the stability of a steadily propagating planar laminar pre-
mixed flame with a general combustion reaction system using the Evans function
method. The stability of the travelling wave solution of the corresponding time
dependent system is determined by the spectrum of the linearised second-order
differential operator. Exploiting the structure of the differential equations due
to Arrhenius temperature dependence the spectrum was investigated in detail. A
simple geometrical method was shown for the study of the essential spectrum,
and for determining the domain of the Evans function. This method can be
applied for systems when the matrices Q+ and Q− (which are the limits of Jaco-
bian for s → ±∞) are upper or lower triangular. Sufficient conditions were given
for the reaction term to ensure that Q+ and Q− are lower triangular matrices.
The results are applied to two combustion reactions: to a simple first-order reac-
tion, and to an exothermic–endothermic system.
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